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ABSTRACT 

Mobile phones have the potential to be useful agents for their 
owners by detecting and reporting situations that are of interest. 
Several challenges emerge in the case of detecting and reporting 
“nice to know” situations. Being alerted of these events may not 
be of critical importance but may be useful if the user is not busy. 
For detection, the precision of sensing must be high enough to 
minimize annoying false notifications, despite the constraints 
imposed by the inaccuracy of commodity sensors and the limited 
battery power available on mobile phones. For reporting, the noti-
fications cannot be too obtrusive to the user or those in the vicini-
ty. Peripheral cues are appropriate for conveying information like 
proximity, but have been studied primarily in settings like offices 
where sensors and cueing mechanisms can be controlled. 

We explore these issues through the design of PeopleTones, a 
buddy proximity application for mobile phones. We contribute (1) 
an algorithm for detecting proximity, (2) techniques for reducing 
sensor noise and power consumption, and (3) a method for gene-
rating peripheral cues. Empirical measurements demonstrate the 
precision and recall characteristics of our proximity algorithm. A 
two-week study of three groups of friends using PeopleTones 
shows that our techniques were effective, enabling the study of 
how people respond to peripheral cues in the wild. Our qualitative 
findings underscore the importance of cue selection and personal 
control for peripheral cues.  
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H.1.2 [Information Systems] User/Machine Systems – Human 
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1. INTRODUCTION 

One vision for ubiquitous computing is a context-aware infra-
structure that can simplify and enrich our lives by helping us with 
tasks that might otherwise be out of our reach. For example, loca-
tion-based services such as Loopt can detect the proximity of 
friends that are just out of sight or unnoticed [27]. Such applica-
tions can be useful for a variety of scenarios such as arranging ad-
hoc meetings. To date such wide-scale applications have de-
pended on specialized phone and carrier capabilities to detect 
proximity, both at a real cost to the user. Moreover, the user must 
make a conscious effort to look at the phone to learn of friends’ 
proximity, lessening usefulness. 

Realizing the ultimate vision depends on a ubiquitous mechanism 
for detecting such occurrences. For “nice to know” contextual 
information like the proximity of friends, we also need an unob-
trusive mechanism for making us aware of them. To achieve true 
ubiquity – so that any two friends could be aware of their prox-
imity – both must be achieved at little cost. In this paper we ex-
plore the technologies of mobile phones and peripheral cues for 
the ubiquitous sensing and reporting of “nice to know” context 
through PeopleTones, an application for buddy proximity: 

• Commodity mobile phones satisfy the ubiquity criterion (and by 
extension the cost criterion). As of 2007, there are 3.3 billion 
mobile phone subscribers worldwide [45]. Moreover, mobiles 
possess both a number of sensors (e.g., microphone, camera, 
and GSM radio) and actuators (e.g., speaker and vibration mo-
tor), making phones a potentially ideal platform for ubiquitous 
computing. On the other hand, the sensors and actuators are of 
notoriously low quality, complicating precise sensing and high-
fidelity actuation. Inference can be especially problematic when 
comparing readings between phones [11]. 

• Peripheral cues, like those explored in office and home envi-
ronments, are an attractive modality for “nice to know” informa-
tion. That is, they can apprise users of information without in-
terrupting their current task. However, getting peripheral cues to 
work with commodity mobile phone actuators in the wild is an 
open challenge. 

For detecting proximity on phones, our algorithm compares cell 
towers seen by the mobile phone clients to estimate proximity. 
This privacy-friendly approach does not require knowledge of 
actual location. However, GSM’s long range and random charac-
teristics means that a phone will, for example, occasionally detect 
cell towers that are miles away. We filter the proximity data using 
a simple state machine based on a 2-bit counter [33]. The state 
machine also helps to conserve power by sampling more slowly 
when two phones are considered near or far away. Power is fur-
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ther conserved by withholding reports when GSM signals are 
weak; proximity detection in this case is imprecise and extra pow-
er is required to report it. 

Proximity can be reported by sounds, and past work has shown 
audio to be effective for delivering peripheral cues [32]. However, 
it is untenable to expect the use of headphones or similar devices 
to reduce the unobtrusiveness of cues or increase comprehension. 
We hypothesize that keeping audible cues short can improve their 
unobtrusiveness, but that may not be adequate for many uses. We 
propose using the vibrations provided by mobile phones, as they 
are private, subtle cues [17], and likely to be etiquette-friendly. 
Vibrotactile cues that correspond to known audible cues (i.e., they 
“vibrate like the sound”) can provide a parallel “private” vibration 
language without requiring the user to learn an arbitrary mapping.  

However, the inexpensive vibrotactile actuators found on mobile 
phones today only have a binary on/off setting, severely limiting 
their communication abilities. To provide vibrotactile cues cor-
responding to the audio cues, we introduce an offline digital sig-
nal processing technique that captures the essence of audio cues. 
These patterns were realized on the mobile phone’s limited vibro-
tactile actuator using our software algorithm. Using a technique 
similar to pulse width modulation, we can generate a range of 
amplitudes. 

To explore these mechanisms we performed both controlled and 
in situ user studies of PeopleTones. First, we measured the preci-
sion and recall of our proximity detection algorithm using a large 
dataset collected from wardriving the Seattle area [11]. Second, 
we lab-tested 17 users on their ability to identify how vibrations 
corresponded to music clips. Finally, we designed and deployed 
PeopleTones, a system for conveying buddy proximity via peri-
pheral cues that are uniquely assigned to buddies. PeopleTones 
was deployed to three groups of friends (the same 17 users as 
above). Each group used a different cue-to-buddy mappings: na-
ture sounds, music sounds picked by the buddies, and music 
sounds picked by the recipient of the cues. To uncover possible 
learning of the vibrotactile cues during the study, we repeated the 
lab test at the completion of the study. 

For proximity detection, our findings show that our approach has 
excellent precision (few false positives) and fair recall (a split 
between true positives and false negatives). The two bit counter 
reduces false positives by up to 84.9% and increases precision to 
99% at a threshold ratio of 0.4.  The fair recall is adequate be-
cause proximity is most valuable for people who are lingering 
near each other (e.g., not driving), and such behavior provides 
many chances to produce a positive report. Such lingering also 
diminishes the effects of the cell towers that were cached in the 
phone upon arrival to the area, which is influenced by the towers 
seen along the users path to the destination. Managing power by 
dynamically adjusting the sampling rate enables a phone to run for 
one to two days, as opposed to 4-6 hours. 

A general theme of the qualitative results is the importance of 
personal control for peripheral cues. Using ambient noise to detect 
social situations was explored as a way of choosing audio versus 
vibration cues, but most users opted to enforce explicit control of 
their cue delivery modality. Users who selected the cues they 
would hear found the system more useful and were also better at 
identifying corresponding vibrotactile patterns generated by our 
algorithms. 

After a discussion of related work, Sections 3 and 4 detail our 
approaches to proximity detection and delivering peripheral cues 
on mobile phones. Section 5 introduces PeopleTones, and Sec-
tions 6-9 describe the results of our in situ user study. 

2. RELATED WORK 

We build on work from three areas: proximity sensing, mobile 
peripheral cue systems, and auditory and tactile cues. 

2.1 Proximity Detection in the Wild 

A number of technologies have been proposed for proximity sens-
ing. Infrared approaches such as those used by Meme Tags [3] 
provide good accuracy but require line of sight. Ultrasound ap-
proaches such as Activebadge [42] also provide good accuracy but 
they require infrastructure support. Hummingbird uses short range 
radio which allowed Holmquist et al. to explore deployments in 
the wild [20]. This approach provided good proximity detection 
but required specialized hardware, which created complications 
for in-the-wild deployment. PlaceLab uses estimates of cell tower 
positions to provide location [26]. This approach provides excel-
lent coverage and adequate accuracy for detecting something like 
buddy proximity (e.g., median accuracy of 94-196m and 90th per-
centile accuracy of 291-552m, using a single carrier’s towers), but 
it requires a “wardriving” of the area to obtain location estimates 
for cell towers in the area. This can be quite costly, especially 
keeping the information up to date, as tower positions, etc. are 
updated on an annual basis. 

One method of acquiring location on some phones is through the 
network carrier, but they often do not release the required APIs. 
Loopt is an example of a commercial system that enables sharing 
location with friends using GPS enabled phones [27]. Unfortu-
nately GPS is not yet widespread, suffers from not working eve-
rywhere, i.e. urban canyons and would violate user’s privacy by 
requiring location reports to a server. Dodgeball explores self-
reporting location [12] but would require user’s to pro-actively 
monitor the system, which is counter to our goal. 

Another method is to use a location infrastructure. Place Lab 

[26], Activecampus [16], and Plazes [34] are examples that offer 
both absolute and relative positioning. These infrastructures limit 
sensing to areas with pre-mapped access points.  

Rather than calculate absolute location, NearMe explores a few 
algorithms for detecting proximity using Wi-Fi signatures, allow-
ing it to work with no a priori setup [25]. We use a similar ap-
proach but for GSM readings. 

2.2 Mobile Peripheral Cue Systems 

Peripheral cues have been heavily examined in office settings. 
Audio Aura [32], Live Wire [43] and ambientROOM [24] are 
systems that play auditory cues for conveying information in the 
background. Peripheral displays are known to be difficult to eva-
luate [29],[31] and peripheral cues suffer from similar problems. 
The success of peripheral cues in home and office environments 
suggests that they may be useful in the wild. Deployments in the 
wild often reveal uses not found in laboratory studies. Examples 
of this include location-sharing [38] and reminders [39]. 

Mobile context-aware platforms have been proposed for aiding 
instant messaging, an intended, explicit interaction scenario. 



WatchMe [30], Hubbub [22], and Connexus [41] are examples of 
such applications, supporting the initiation of a messaging session 
by providing cues of availability (e.g., not in a conversation). 
Studies with Nomadic Radio found that auditory communication 
is useful for mobile messaging but minimizing intrusiveness re-
quires more than, for example, detecting breaks in conversation 
[36]. One possibility is detecting activity transitions with accele-
rometers placed in the seat of a chair or worn on the body [19]. 
Such approaches are less viable in the wild. Many of these sys-
tems have suggested that audio cues could be used to identify 
different users. Commercial ringtones are similar in that they map 
a person’s identity to an audio cue, but they are little studied and 
most phone users don’t consider an incoming call a “nice to 
know” condition (and hence worthy of a peripheral cue).  

2.3 Auditory and Tactile Cues 

Gaver’s work with auditory icons revealed the effectiveness of 
using sounds that are semantically related to the objects they 
represent [13]. Brewster’s work with earcons found that music 
timbres are better at conveying information than unstructured 
sounds [5] and that non-speech audio can be effective for naviga-
tion [4]. We build off of these findings, using structured sounds 
for our auditory cues and exploring how different types of sounds 
effect user response. 

Tactile cues are subtle, private cues [17] that have been suggested 
as a channel for ambient information delivery [35]. Tactile per-
ception cannot be fully utilized without a high-fidelity delivery 
channel [1]. Piezoelectrics have been proposed to convey infor-
mation using touch, such as in Luk et. al’s Tactile Handheld Mi-

niature Bimodal [28]. Vibrotactile cues have been proposed for a 
variety of uses such as for conveying information in a non-visual 
channel. Geldard’s Vibratese language proposed a vibrotactile 
encoding of the English alphabet [14],[15] and ComTouch ex-
plored vibrotactile communication without learning (i.e., training) 
[9]. Tactons use specialized actuators similar to those found in 
mobile phones to generate distinct pulses, which have been shown 
to be effective for alerting users to message type as well as urgen-
cy [7],[8]. These works demonstrated that vibrotactile patterns can 
be differentiated. Multifunction transducers have been used to 
explore audio-haptics, playing vibration in conjunction with audio 
in mobile phones [10]. Still, vibrotactile development on com-
modity phones is limited by APIs that provide only on/off func-
tionality. The VibeTonz technology from Immersion supports 
richer, more complex vibrotactile pattern generation, but utilizes 
specialized hardware that is currently available on only a handful 
of commercially available handsets [23].  

3. PROXIMITY DETECTION 

There were two design requirements we felt were necessary for a 
buddy proximity detection algorithm. First, it should be widely 
deployable in many environments with many phones, doing so in 
a privacy-aware manner. Secondly, since buddy proximity is “nice 
to know” information, it is important that when cues are deli-
vered, friends are actually near one another. If too many cues will 
be delivered when buddies are far away, users will stop using it. 
In the case of reporting when buddies are near, it is therefore im-
portant to maintain a high precision, even if this means lower 
recall. 

Precision is defined as the number of near reports that are correct 
divided by the total number of near reports. High precision means 
that there are few false positives. Recall is the number of near 
reports that are correct divided by the total number of actual near 
occurrences. High recall means that most of the near occurrences 
have been detected. 

PeopleTones does not need a person’s geographic location to find 
the proximity of nearby buddies. Hence, we used a relative posi-
tioning method in the spirit of the Nearme server [25]. Nearme 
used a variety of metrics for comparing the distance between two 
wireless measurements, such as Euclidean distance, spearman 
rank correlation, and the ratio of common access points.  

3.1 Proximity Detection Algorithm 

To run controlled tests on a few different proximity detection 
approaches, we collected a small sample of cell tower readings 
from three regions with different population densities. These were 
obtained by sampling cell tower information from each of 3 mo-
bile phones, all on the same carrier. Each phone recorded two 
samples while positioned each location. We took samples 5 mi-
nutes apart to approximate realistic behavior where users might 
linger at a particular location. To eliminate potential caching ef-
fects that may occur when reading cell tower information from the 
phone’s memory, we reset all the phones in-between samples. One 
phone was kept stationary while the other two were moved away 
from the stationary one at 0.2mi intervals. The i-mate SP3i (HTC 
Tornado) phones we used are capable of reporting up to 7 towers 
at once. In summary, we used 2 samples per phone per region, 2 
phones, 7 distances, and 3 regions, resulting in 84 readings. The 
purpose of gathering these readings was to test different algo-
rithms for proximity detection on a realistic set of data. In our 
initial experiments, we found that computing the ratio of common 
GSM cell towers between two readings provided the best real-
time proximity indicator. The intuition is that the closer two 
phones are, the more cell towers they will have in common. This 
ratio is simply the number of common towers between the two 
phones divided by the average number of towers seen. Figure 1 
shows the equation we used for computing the ratio of cell towers 
between two phones, given two readings a and b, each consisting 
of a set of cell tower sector identifiers. 

Figure 2 plots the averages of the proximity-ratio values for the 
three regions from which we collected data. From this plot we can 
see a clear trend for ratios to decrease as distance increases, al-
though not consistently; there is a lot of noise. This suggested that 
the ratio approach would be promising for approximating distance 
between two stationary phones but we still needed to determine an 
appropriate ratio for a peripheral cue application’s needs.  
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Figure 1. Equation used for calculating proximity ratio for two 

mobile phones where a and b are the sets of cell towers seen by 

each phone. 



3.2 Evaluating Cell Tower Ratio Algorithm 

for Proximity Detection 

Evaluating our proximity_ratio algorithm was less than 
straightforward. It was difficult to obtain a suitably large and ap-
propriate dataset for modeling two stationary phones at a variety 
of locations. Ideally, we would have simultaneously recorded 
readings from many stationary phones all at different locations 
with some ground truth measurement. However this would be 
hard if not impossible to achieve for a large number of phones. 
Instead, we used the dataset collected by Chen et al. from their 
wardriving of Seattle [11]. During this process, they collected cell 
tower data along with GPS coordinates by driving around the 
greater Seattle area, equipped with a laptop, 2 mobile phones per 
carrier and a GPS device. They sampled the phones and GPS 
device approximately once per second to record cell towers seen 
by the phones and GPS coordinates. Since two phones were used 
per carrier, valid comparisons could be made between cell tower 
readings seen by the two different phones. We used readings from 
a Downtown area with an average cell tower density of 66 tow-
ers/km2 and a Suburban area with an average cell tower density of 
26 towers/km2. 
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Figure 2. Initial cell ratio measurements taken from 3 different 

areas of varying population density. 
 

This dataset is not entirely applicable to buddy proximity detec-
tion. Because the data was collected from a moving vehicle, it 
only allows for modeling proximity situations where both mobile 
phones are moving quickly. We are most interested in scenarios 
when both phones are stationary or nearly so. Still, the data in-
forms scenarios in which users may be moving. When people are 
driving, they are less likely to be interested in nearby buddies that 
are also moving, since it is unlikely that both will be available and 
have free time. In this case, lower recall rates are desirable. If two 
users are in actuality near each other, this is likely to be temporary 
and thus a system should not detect it.  

Moreover, not all the points in the data set were collected at the 
same time, with some readings collected almost 5 hrs apart. Due 
to the load balancing employed by cell towers, comparing proxim-
ity between two phones seen at two different times is not an accu-
rate model for a real-time application. To address this, we crosscut 
the dataset in different ways to approximate the precision and 

recall of the proximity_ratio algorithm for different scenarios. We 
then consider tradeoffs between precision and recall for different 
cutoff ratios in these scenarios. We were particularly interested in 
the behavior for two scenarios: when phones were at the same 
location, and when they were near each other. By breaking the 
analysis into these two different scenarios, we can use this dataset 
to evaluate our algorithm for a variety of distances. 

3.2.1 Same Location 

To analyze behavior when phones are in the same location (within 
100m) and when participants are lingering in areas near each oth-
er, we extracted pairs of cell tower data where the readings were 
taken within 5s of each other. This yielded 28,625 pairs from 
Suburb and 19,087 pairs from Downtown. Analysis of GPS read-
ings confirmed 99.9% of these points were within 100m of each 
other. We then calculated precision and recall numbers based on 
calculations of ratios for these comparisons. Table 1 shows recall 
values for different ratios in the Downtown and Suburb areas. 
Recall is higher for low ratios and tapers off for ratios between 0.3 
and 0.4. Precision is 99.9% since the subset falls within 0.1km.  

 

Table 1. Recall for different ratios with a distance threshold of 

0.1km when phones are at the same location. Precision is 

99.9% since the subset falls within 0.1km. 

Ratio Recall 
(Downtown)

Recall
(Suburb)

0.1 0.96 0.96

0.2 0.84 0.85

0.3 0.83 0.83

0.4 0.57 0.58

0.5 0.44 0.44

 

3.2.2 Evaluating Near Each Other 

We were also interested in situations where two mobile phones 
were near each other but not necessarily right next to each other. 
Since the data points collected from this set were taken from the 
same car, the phones were always next to each other at any partic-
ular time. Thus there was no way of getting same-time data from 
two phones that were far apart. To approximate situations where 
phones are near one another, we extracted pairs of readings taken 
within 90s of each other resulting in 569,264 pairs from the Sub-

urban dataset and 379,285 pairs from the Downtown dataset. We 
then calculated the proximity_ratio for these pairs. Despite the 
higher recall rates for low ratios reported in the previous section, 
we knew from our initial studies that low ratios would have a 
much lower recall in a realistic setting since they detect phones 
that are miles away as “near” as well, so we focused on ratios 
higher than 0.3, since this is when recall rates were seen to de-
crease in the analysis of phones in the same location.  

Figure 3 and Figure 4 show the precision of the proximity_ratio 
algorithm when different threshold ratios are used for near/far 
determination. For phones in this near each other scenario, the 
lower the ratio, the lower the precision. The precision for Down-

town is higher than that for Suburb which is not surprising consi-
dering the higher cell tower density in this region. The range of  



Table 2. Recall rates at distances 0.1km to 1.0km for different 

ratios when phones are nearby. 

Ratio Recall
(Downtown)

Recall 
(Suburb)

0.1km 1.0 km 0.1 km 1.0 km

0.3 0.74 0.66 0.67 0.66

0.4 0.50 0.41 0.42 0.40

0.5 0.39 0.30 0.30 0.29
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Figure 3. Precision for different “nearby” distances in Suburb. 
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Figure 4. Precision for different “nearby” distances in Down-

town. 

recall rates observed over this area are shown in Table 2. While 
lower ratios still have higher recall rates than higher ratios, this 
comes at a cost of precision. Considering the design requirements 
for a peripheral cue application discussed earlier, precision is 
more important than recall. The issue of how close is close 
enough is addressed later in section 9. Precision increases as the 
distance threshold is increased since more false positive results 
become true positives. It should be noted that precision hits 99% 
at 0.5km in the Downtown case and at 0.7km in the Suburb case 
suggesting that even when false positives are delivered, these false 
positives are within 0.5km and 0.7km for Downtown and Suburb 
locations. 

3.2.3 Far Apart 

To validate proximity_ratio for phones that are far from each oth-
er, we decided to look at the entire dataset, even though we knew 
the temporal problems we described earlier would confound our 
analysis. For scenarios when phones are far apart, we were partic-
ularly interested in low recall while maintaining precision. Specif-
ically, we wanted to make sure that increasing distance would not 
result in more false positives.  
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Figure 5. Precision at different distances in Suburb for the 

entire data set. 
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Figure 6. Precision at different distances in Downtown for the 

entire data set. 

By comparing all of the pairings of readings from one phone to 
readings from the other phone, we obtained 55,181,015 Suburb  

 

pairs and 36,769,390 Downtown pairs. Figure 5 and Figure 6 
show the precision at different distances for this set of compari-
sons. The precision values for this data follow the same trends 
observed before. Precision is higher for higher ratios and all ratios 
are able to obtain precision of 99% by some threshold (1.0km in 
Downtown, 2.4km in Suburb). These findings confirm that the 
proximity_ratio algorithm is effective at reducing false positives 
for moving phones that are far apart. However, recall rates are 



significantly lower (Table 3). The rates from the previous sections 
are much higher and based on more relevant data.  

In our experience, the actual precision is lower than that calcu-
lated with this dataset and the recall is higher. For the reasons 
described earlier, it is difficult to gather the cell reading data from 
many phones simultaneously that we would need for a valid mod-
el of phones that are stationary at different distances. We defer 
qualitative analysis of proximity_ratio to a user study described 
later.  

Table 3. Recall rates for different ratios in the entire dataset. 

Ratio
Recall

(Downtown)
Recall (Suburb)

0.1km 1.0km 0.1km 2.4km

0.3 0.12 0.08 0.09 0.06

0.4 0.05 0.04 0.03 0.02

0.5 0.03 0.02 0.02 0.01

 

3.3 Sensor Noise 

GSM readings can vary widely from moment to moment in ways 
unrelated to the phone’s proximity to the cell towers in the region. 
This creates the possibility of false proximity detection. Addition-
ally, if buddies hover around a 0.2mi distance from each other for 
a prolonged period of time, multiple cues might be triggered, 
creating an annoyance. To mitigate such errors, we implemented a 
client-side filter for removing sensor noise.  

We utilized a proximity reporting mechanism whereby a friend’s 
nearby state is updated only after a number of consistent, consecu-
tive readings. We originally considered using a straightforward 
approach of waiting until we detected 2 consistent consecutive 
readings (2-same-filter) or 3 consistent consecutive readings (3-

same-filter) of near or far before updating a buddy’s nearby state. 
In a pilot study, we found that 2-same-filter helped reduce sensor 
noise, but still produced a number of false positives. In many 
situations, when buddies are near a distance corresponding to the 
ratio threshold of proximity, the ratio readings fluctuate between 
near and far quite a bit. As an improvement we decided to use a 
state machine approach, motivated by the 2-bit counters used with 
branch predictors in computer architecture [33]. Figure 7 illu-
strates the logic used for this approach. Buddies are initially re-
ported as far away. Edge transitions represent a sensor sampling, 
yielding near or far. The state of a buddy is only updated to far or 
near when the states “Report Far” and “Report Near” are reached. 
This approach could potentially be applied to any binary decision-
making sensor as long as it is accurate more than 50% of the time. 
Henceforth we call the 2-bit counter approach 2-bit-filter. 

 

Figure 7. Two-bit counter for eliminating noise in proximity 

detection. 

2-bit-filter attempts to improve upon these simpler algorithms. 3-
same-filter further reduces noise over 2-same-filter but at the ex-
pense of added delay. In the worst case, 2-bit-filter behaves like 3-

same-filter. However, 2-bit-filter improves upon this approach 
because in all but the worst case, it has the responsiveness of a 2-

same-filter with the consistency of 3-same-filter. As a result it is 
more robust than either of these two techniques.  

To evaluate 2-bit-filter, we compared its performance against 2-

same-filter and 3-same-filter. We also used a baseline condition 
whereby we would report near or far based on a single reading. 
For sensor noise filtering, we were interested in situations where 
users would be transitioning from far to near or vice versa. To 
extract these scenarios from the original dataset, we extracted 
readings from the original dataset at 30s intervals. We then ran the 
three algorithms and the baseline on the resulting dataset. 

Since all ratios showed a similar reduction in false positives, we 
report on the average reduction over the baseline. The usage of a 
2-same-filter was effective at reducing noise, reducing the average 
number of false positives by 53.8%. 3-same-filter reduced false 
positives by 80.9%. 2-bit-filter was most effective, reducing false 
positives by 84.9%. The reduced false positives translated into a 
higher precision, increasing by an average of 5% for a distance of 
0.1km. This is quite significant considering the already high per-
centage of precision being reported in the previous section. Recall 
rates were improved by a negligible amount. 

This analysis demonstrates that the 2-bit-filter can be an effective 
technique for reducing sensor noise by maintaining recall while 
reducing the number of false positives. Not apparent in this analy-
sis is the cost of using one of these filtering schemes, namely de-
layed proximity detection, which we address in the next section. 

3.4 Minimizing Power Consumption 

The limited power supply from mobile phone batteries requires 
careful consideration in a continuously running context-aware 
system. We addressed this by adjusting the sample rate and by 
minimizing unnecessary transmissions over the data network.  

Sampling cell towers quickly often did not yield a change in seen 
cell towers, suggesting we could reduce the sample rate to save 
power, without dramatically affecting proximity detection re-
sponse time. To get an idea of how sampling rate would affect 
power consumption, we originally chose a sample rate of 1 sam-
ple/20s. This caused the phone battery to discharge in less than a 
day, unfeasible for a study in the wild. To address this we de-
creased the sample rate to 1 sample/90s which turned out to be 
sufficient for a study in the wild, only requiring a recharge every 
other day. However, the usage of the 2-bit counter described in 
the previous section introduced a potential delay of 3 sample pe-
riods, 270s at a sample rate of 1 sample/90s.  

To reduce the delay of proximity detection, an adaptive sampling 
rate was used. Initially, buddy proximity is sampled at a rate of 1 
sample/90s. When the counter moves into a “maybe” state, the 
sampling rate is increased to 1 sample/20s, until steady state is 
reached (either “Report Far” or “Report Near”), at which point the 
sampling interval reverts to 1 sample/20s. This approach mitigates 
the delay of proximity detection reducing it to approximately 1.4 
times the original sample rate. Initial data collection suggests 2-

bit-filter used in conjunction with an adaptive sampling rate pro-
vides good filtering of noisy data while reducing the delay of 



proximity detection. To avoid redundant notifications for buddies 
hovering around the near/far cutoff, the cues for a pair of buddies 
are delivered at least an hour and a half apart. 

Our use of two sampling rates helps reduce power consumption to 
some degree, but measures are needed for situations with poor 
network signal. For one, sending data over a poor link tends to 
consume more battery power, in part because these data transmis-
sions are more likely to fail, causing the underlying system to 
continue to attempt sending. Two, a poor link is indicative that 
there are no cell towers that are strongly suggestive of the phone’s 
relative location, so making a report provides no information 
about the phone’s whereabouts. These black hole situations are 
common in the USA, such as inside buildings with lots of metal or 
concrete. The PeopleTones client detects these situations by com-
paring the phone’s signal strength to a threshold. To compensate 
for when clients in these situations do not update, the server re-
tains the last reported reading from the phone along with a time-
stamp, so that others can still make inferences about proximity for 
a while, assuming that the non-reporting of their buddies is caused 
by being in a building. 

To measure power consumption, we timed how long it took to 
drain a fully charged iMate SP3i (HTC Tornado) running People-
Tones with the considerations described above. It took 2 days and 
16 minutes to fully discharge the battery. This time period was 
deemed sufficient, precluding the need for daily recharges. 

4. PERIPHERAL CUES IN THE WILD 

For the purposes of this study, we made three considerations to 
keep cues unobtrusive: 

• First and foremost, the cue should not invade the periphery.  

• Second, when the cue is perceived, it should not be seen as 
inappropriate in any way, most notably by those for whom the 
cue is not intended – a matter of etiquette. 

• Third, because the periphery is constantly shifting with one’s 
attention, perhaps as demanded by other changes in the envi-
ronment (e.g., someone speaks to you, or shifting traffic condi-
tions while driving), the cues, when perceived, should not be 
distracting – they should not impede shifts in attention or other 
natural changes to the periphery. In particular, people should 
not have to think about the cues that they are perceiving. 

We refer to these three properties collectively as unobtrusiveness. 
With these issues in mind, the principal challenge with the use of 
peripheral cues in the mobile setting is resolving the tension be-
tween reliable receipt of cues and unobtrusiveness, without mak-
ing unrealistic assumptions such as the required use of headsets. 
Peripheral cues can be overlooked without harm, and as designers 
we can err on the side of cues being missed. 

With these considerations in mind, we decided to use a ratio thre-
shold of 0.4 for our peripheral cue application. Based on our find-
ings reported earlier, this provided good precision while maintain-
ing fair recall. Our pilot studies confirmed this was an effective 
ratio for the deployment area. 

We hoped to gain insight on these complex considerations over 
the course of our study, but we did have some initial hypotheses. 
One, short audio cues would be less invasive and more polite than 
long cues. Two, having corresponding vibration cues could be 
useful both for politeness and increasing chances of being per-

ceived in noisy environments. Three, environment sensing could 
support the adaptation of the cues being played to ensure consis-
tent maintenance of peripherality and politeness. 

4.1 Auditory Cues 

Since much past work with peripheral cue systems has used sound 
cues to deliver information, we followed in suit. Playing sound 
cues from a mobile phone is natural, but has potentially different 
requirements than environmental-based systems. Past work has 
found that short, rich auditory cues that build off of sounds users 
are accustomed to hearing in their normal lives can provide in-
formation to users serendipitously [32]. We explored a number of 
different types of sound cues. Soothing nature ecologies have 
often been used and so we created a set of nature cues of 3-5 
seconds in duration. Music cues were also explored given that 
music timbres are effective for conveying information [6]. Many 
mobile phones have the ability to map specific ringtones or music 
clips to different users on a contact list. While many people use 
these, the efficacy of mapping sound clips to identity is relatively 
unexplored. Yet, for a buddy proximity application, music clips 
seem promising for mapping the identity of a person to an audio 
cue, given the possibility of a semantic link [13]. 

4.2 Vibrotactile Cues 

In many office setting studies of peripheral cues, a headset or 
other wearable device is often the delivery mechanism used for 
delivering auditory cues in an etiquette-friendly manner. When 
delivering peripheral cues in the wild, where the user can be in a 
variety of social settings, it is unreasonable to require them to 
wear an additional device for receiving auditory cues. Mobile 
phones offer the ability to play sounds using their speakers, which 
can be effective for informal situations, but it is unlikely that this 
delivery channel will always be socially acceptable. Much like the 
silent or vibrate-only modes on mobile phones, peripheral cues 
delivered via these devices must also have a socially etiquette 
friendly mode [17]. 

Motivated by haptics research suggestions to use vibrotactile cues 
for ambient information delivery [35], we explored using vibro-
tactile patterns to convey ambient information on mobile phones 
with the actuator that commonly ships with these devices. Ideally, 
there would be a one-to-one mapping of sound cues to vibrotactile 
patterns, where a user could easily identify a vibrotactile cue and 
its respective auditory cue. However, generating a variety of dis-
tinguishable vibrotactile cues can be difficult on commodity mo-
bile phones, given the limited API; most mobile phones only sup-
port the functionality of turning the actuator on or off. With the 
exception of phones with specialized built-in hardware [23], the 
API for most phones does not support playing vibrotactile pulses 
of different amplitudes nor do they provide any low-level functio-
nality to specify the amount of current used to drive these actua-
tors. 

4.2.1 Generating Different Vibration Levels Using 

Mobile Phone Actuators 

We present an algorithm to generate a wider range of vibrotactile 
sequences that circumvents API constraints on actuator functio-
nality. While a full analysis of the capabilities of this approach is 
outside the scope of this paper, the basic algorithm for playing a 



pulse of varying amplitude is presented below for completeness. 
By changing the duty cycle1 of the voltage sent to the motor, dif-
ferent speeds can be obtained. Similar techniques are used to re-
duce power consumption of DC motor. This approach also reduc-
es motor speed, making it useful for our goal of modulating the 
level of vibration. Our software approach repeatedly turns the 
actuator on for short periods of time, spinning between calls to the 
function that turns the actuator on. Timing is critical during this 
process, so the active thread is given the highest priority to avoid 
inopportune context-switches. By doing so, we demonstrate that 
we can achieve pulse-width modulation2 via software. Different 
amplitudes can be generated by varying duty cycle. 

 

Figure 8. Code for generating a 20ms vibrotactile pulse. 

 

Figure 8 shows a code segment for this process. The playVi-
brate function represents the standard function for turning the 
actuator on, supplied by almost all mobile phone APIs. The va-
riables onTime and offTime control the amount of time the actu-
ator is turned on and off respectively. We demonstrate that by 
changing the values of these, we can adjust the duty cycle of the 
vibrotactile actuator, changing the level of vibration generated. 

A series of pilot studies found that people could not detect pulses 
played for less than 20ms in this manner and suggested the operat-
ing range could be divided into 10 differentiable levels, sufficient 
for this study. To generate a 20ms pulse level of 1, values on-
Time=1, offTime=9 are used. To generate a 20ms pulse level of 
9, onTime=1, offTime=1 values are used. A pulse level of 10 is 
generated by calling the playVibrate function for the desired 
pulse length. Using this approach, a vibrotactile pattern can be 
defined as a sequence of such pulses of varying level. 

To examine the effects of our software approach on the actual 
hardware, we opened a phone and measured the voltage levels 
produced by our software using an oscilloscope. Figure 9 shows 
sample oscilloscope plots measured for 4 different amplitudes. 
These plots confirm that our algorithm successfully achieves 
pulse-width modulation and that the different levels of vibration 
produced are the result of this. Mapping Sounds to Vibrotactile 
Patterns 

With peripheral cues deployed in the wild, a number of situations 
will arise where auditory cues will be socially disruptive (e.g. 
during a meeting) or might not be heard over ambient noise (e.g. 
walking by a busy street). We generated vibrotactile cues as a 
complement to auditory ones, hoping to leverage the association 
of auditory cue and buddy identity. If a vibrotactile pattern can be 
generated such that users can match it to its corresponding audio 

                                                                 
1 Duty cycle refers to the proportion of time that the device is turned on. 
2 Pulse-width modulation refers to the modulation of duty cycle. 

cue, then users can map the vibrotactile pattern to the buddy cue 
as well. This would reduce the need for learning a vibrotactile 
language. 
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Figure 9. Oscilloscope plots of voltage generated for vibrotac-

tile actuator for pulses at levels (a) 1 (b) 3 (c) 5 and (d) 10. 

 

Mapping auditory cues to vibrotactile sequences is challenging. 
On the one hand, there are difficulties associated with trying to 
map from an auditory system to a tactile one, where different re-
ceptors are being used to receive information [2]. This issue be-
comes further complicated by the significant differences in sample 
rates. Our pilot studies found that participants had difficulty diffe-
rentiating between vibrations separated by less than 20ms. This 
generates a signal with fidelity equivalent to a signal sampled at 
50Hz. A typical music file is sampled at 44.1kHz, a full three 
orders of magnitude greater, capable of capturing far more fideli-



ty. To address this gross level of under sampling, we utilized a 
number of digital signal processing techniques as part of the en-
coding process to try to capture the essence of the sound. We used 
a semi-automated method for converting a song to its vibrotactile 
equivalent using Matlab on a desktop PC. 

 

Figure 10. Block diagram showing the process of converting a 

wave file to a vibrotactile pattern. 

Capturing the essence of a song is a known hard problem [1]. 
Initially, we considered the beat of the sound by examining lower 
frequency components of the clip. While this can be effective for 
certain sound clips, our experience suggests that it is because of 
the higher amplitudes of the low frequency components in those 
sequences. The lyrics of the song chorus were also thought to be 
important to characterize, given their use in identifying songs. 
However, in practice, lyrics are difficult to map to our vibrotactile 
language due its lower fidelity. 

Pilot studies suggested that a combination of amplitude threshold-
ing and bandpass filters would be the most promising approach. 

While lyrics are important in recognizing songs aurally, they are 
in practice difficult to map to vibrations. Instead, we aimed at 
mapping the beat of the song to vibrotactile patterns. We also 
found that by exaggerating the difference between loud and quiet 
sounds, the song was better characterized. The general process 
can be thought of as trying to create a humming sequence for the 
audio clip. Figure 10 outlines the general steps of this process. 

The first step in converting a sound file into a vibrotactile pattern 
is to remove noise from the original signal. In this context, we 
consider “noise” to be elements of the sound that are not signifi-
cant to the vibrotactile encoding of the sound, in addition to the 
traditional definition of the term. Our pilot studies found that 
components of the signal falling between the frequencies 6.6kHz 
to 17.6kHz were a good balance between noise reduction and 
keeping the original signal. We used an 8th order implementation 
of the Butterworth Filter (a commonly used filter for band-pass 
filtering [18]) to isolate the components of the signal in this fre-
quency range (Figure 10-Remove Noise/Apply Filters). Addition-
ally, we use an amplitude threshold to remove components from 
the output of the bandpass-filtering step. We only keep compo-
nents that are greater than the average of the output. 

The next step in the process is to try to characterize the resulting 
processed signal in a way that preserves the characteristics of the 
sound file. To do so, we take a running sum of the absolute values 
from the output from the previous step, generating 1 value for 
every 20ms (Figure 10-Take Running Sum). Each sample now 
represents a value that can be played for 20ms while keeping 
length of vibration and length of sound clip consistent. Finally, 
the differences between loud and quiet components of the signal 
need to be exaggerated (Figure 10-Exaggerate Features). We do 
this by composing the output from the previous step with a power 
function of the form Axn where x is the sample value and A and n 
are constants in the ranges: 10 ≤ A ≥ 15, 1 ≤ n ≤ 2. Part of the 
reason this is currently semi-automated is because we used differ-
ent constants for different songs. Generally speaking, we used 
larger values of n when there was a larger range of frequencies in 
the original sound, and smaller values of A when the signal was 
louder. The result is a sequence of values representing a vibrotac-
tile pattern that preserves many of the characteristics of the origi-
nal sound signal.  

5. PEOPLETONES 

To validate the system level components we described above and 
to explore peripheral cues in the wild, we developed PeopleTones, 
an application for informing users of buddy proximity via peri-
pheral cues from their mobile phones. A sound clip and corres-
ponding vibrotactile pattern is associated with each buddy.  

To inform the user of a buddy’s proximity, the user can specify to 
have only vibrotactile cues, only audio cues, or both be played by 
selecting the appropriate phone profile. Alternatively, the user can 
enable an automatic noise detection mode to select an appropriate 
form of delivery. On the one hand, sound cues delivered in the 
middle of a meeting can be disruptive; on the other hand a sound 
cue delivered in the middle of a loud concert would be futile. 
Based on prior research, we knew that detecting interruptability 
on a mobile phone would be impractical at best [36], but detecting 
the noise level in an environment using the phone’s microphone 
to adjust the “level” of the cue is practicable. At the minimum, we 



hoped to learn how people would react to a mechanism for auto-
matically choosing the mode of cue delivery. 

When a cue was triggered to be delivered, ambient noise level was 
measured for 5 seconds and its average amplitude computed. In 
quiet environments, only the vibrotactile cues were played. In 
loud environments, both vibrotactile and sound cues were played, 
as vibrotactile cues can be felt in noisy environments when even 
loud sound cues might be inaudible. Quiet and loud thresholds 
were calibrated using both a quiet office environment and the 
student center of a University during a busy hour.  

a b

 

Figure 11. (a) The main PeopleTones user interface showing 

buddies that are near and far, as well as the last time the sys-

tem was updated. (b) Post-alert prompt asking participants 

how useful the alert was. 
 

PeopleTones is implemented as a client-server application using 
standard SOAP web services. The client-side application is writ-
ten in C#.NET on the Windows Mobile Smartphone platform. 
The interface is shown in Figure 11a. Each phone periodically 
pushes its GSM cell tower readings to the server, which computes 
buddy proximities and then notifies the phones of changes using 
the techniques described earlier. In situations where a client does 
not send the server an update of their location, the location uses a 
timestamp along with a copy of the last update received from that 
user. While all the users in our study used the same adaptive rate, 
this architecture allows clients to update their location as often as 
they like, allowing them to make their own power considerations. 

6.  USER STUDY  

We performed a naturalistic study by deploying PeopleTones to 
three groups of friends, forming three different test conditions, 
each for the course of two weeks.  

Table 4. Group makeup for the three groups. 

 

The purpose of this study was two-fold. First, the results from 
previous sections suggest that proximity_ratio when used in con-
junction with 2-bit-filter, should have high precision and modest 
recall. Yet, we wanted to test the hypothesis that, due to people 

lingering at places where they work, live, and play, that our partic-
ipants would experience both high precision and high recall. 
Second, we sought to understand how peripheral cues worked in 
the wild, especially as regards obtrusiveness, comprehensibility, 
and the behaviors that resulted from their use. Thus, the three 
conditions were varied by the kind of peripheral cues that were 
employed.  

7. PARTICIPANTS 

We recruited three groups of friends forming groups of sizes 4, 5 
and 8 people. These 17 participants consisted of students and 
young working professionals, 12 women and 5 men, aged 19-26. 
Participants were recruited based on interest in a buddy proximity 
application as well as having physically proximal friends. Partici-
pants were given an American Express Gift Card as a thank you 
for their time. 

7.1 Methodology 

Participants used PeopleTones over the course of 2 weeks. We 
conducted 4 interviews over the course of the study. Prior to the 
study, a pre-study interview was conducted to gather basic demo-
graphic information, mobile phone usage habits and general 
“closeness” to the participant’s friends whom were also participat-
ing in the study. Additionally, a pre-study was conducted to eva-
luate whether participants could match the semi-automatically 
generated vibrotactile patterns to sound clips. A mid-study evalua-
tion was also conducted to make sure there were no problems with 
the system. Finally, a post-study interview was conducted to re-
flect on the participant’s experience. A test of matching vibrotac-
tile patterns to music cues was again performed to measure learn-
ing effects, if any, that may have taken place over the course of 
the study, and to evaluate consistency. 

The three groups of friends formed three different conditions for 
cue-to-information mapping methods. Group Nature (N) consisted 
of 5 friends who were given a set of nature sounds to assign to 
their friends. However, they opted for automatic assignment of 
cues, since they felt there was no relationship between the cue and 
their friends. This eliminated the need for a full 2x2 study where-
by a group of users who selected their own Nature cues would 
have been included. Group Your Choice (YC) consisted of 8 
friends who selected a single sound for themselves, representing 
the cue that their friends would hear when they were nearby. 
Group My Choice (MC) consisted of 4 friends who each selected 
the cues that they would hear, when their friends were nearby. 
Table 4 summarizes these group conditions. 

Before the study, participants identified music cues that they 
would want to use for the study. They were given the option to 
identify specific parts of the song that they wanted to use. Alterna-
tively participants could select from 2-3 different 3-5 second seg-
ments of the song selected by the authors, typically chosen for 
their mapability to vibrotactile patterns. After participants selected 
song segments they wanted to use, a corresponding vibrotactile 
pattern was generated, using the procedure described in Section 4. 

8. USAGE AND SELF-REPORTED DATA 

To perform data analysis, we performed client-side logging when 
a cue was triggered. Once a cue was triggered, the participant was 
presented with a form asking them if they acted on it, if it was 



nice to know, if it was not useful, or if it was annoying (Figure 
11b). Alternatively, they had the option to ignore the form if they 
were busy. This post-cue questionnaire was left on the screen so 
they could later respond. If they did not choose to ignore the cue, 
they were presented with a form asking them if they could tell 
who it was to which they could respond “yes from sound” “yes 
from vibration “yes,other” or no. In this case, “yes, other” was 
intended for situations where the participant knew who it was 
based on other factors (e.g. knew their roommate was coming 
home around that time) This was recorded for completeness and 
not factored into the comprehension rates described below. Forms 
were left on the screen until they were responded to.  

A total of 683 cues were sent over the course of 2 weeks, across 
all conditions with 122 cues in the Nature group, 466 cues in the 
Your Choice group, and 95 cues in the My Choice group. Each 
cue resulted in a post-alert form being displayed. Using self-
reported forms displayed on the mobile phone, the user was que-
ried both for their response to the cue as well as whether they 
could identify buddy that the cue represented. The breakdown for 
these post-cue responses is shown in Table 5 and Table 6 respec-
tively. Since all cues elicited a response form and all forms re-
quired a response (even if the response was “Ignore”), the percen-
tages are also reflective of the 683 total. 

 

Table 5: Self-reported response to the cue. 

 

Table 6: Self-reported identification of the cue’s information. 

9. DISCUSSION 

In the following section we reflect on our two major research 
questions: the suitability of peripheral cues as an in-the-wild 
communication mechanism and the suitability of mobile phones 
for providing such cues. We draw on the observations and data 
above, as well as from our interviews with the study participants. 

9.1 Peripheral Cues are a Viable Communica-

tion Mechanism in the Wild 

Unobtrusive peripheral cues in the wild, while challenging, can be 
achieved by informed cue design and providing personal control 
over cueing mechanisms. 

9.1.1 Designing and Choosing Cues for the Wild: 

Music and Personal Control 

Although office-setting studies have found soothing nature ecolo-
gies to be effective for comprehension and unobtrusiveness, cues 
in the wild should be composed of music, and perhaps repeated. 

With regards to comprehension, the self-reported usage data 
shows that groups Your Choice (YC) and My Choice (MC) both 
demonstrated an 83% comprehension rate, where comprehension 
is defined to be when the user could identify the buddy from the 
cue, collapsing results from audio and vibration (Table 6). In con-
trast, the nature group demonstrated a significantly lower rate of 
22%. Interestingly, this lower rate did not result in lower useful-
ness ratings (42%) for the application when compared to the Your 
Choice group (43%). Perhaps the ability to look at the phone after 
receiving a cue mitigated the negative effects of cue comprehen-
sion. Many participants cited that they would prefer longer cues 
since they could be difficult to catch in the dynamic environments 
of their daily lives. For example, <MC-1> commented: “some-
times couldn’t hear because the song was too short.” 

The obtrusiveness of music cues was not a concern. The reasons 
are somewhat surprising. <MC-3> comments: “When it went off 
in [the library] it didn’t actually seem to annoy other people too 
much, they just thought it was just another phone.” This observa-
tion points to the fact that mobile phones have become largely 
invisible and socially accepted, at least for young adults, even in a 
“quiet zone” like a library. (We reflect more on etiquette concerns 
in the next section.) Another reason cited for the unobtrusiveness 
of music cues was the positive feelings generated by the music. 
<MC-1> comments: “I would like longer songs so I could hear it 
and because I like the songs.” The Your Choice group made simi-
lar comments, even though they did not pick their music cues. 
<YC-5> comments that she liked: “Just hearing the songs. I liked 
the fact that each person could choose whatever they want for 
their own identity. Since it was a small group of us, it’s kind of 
fun and it felt like this is a group of us.” Overall, 9 of the 12 mu-
sic participants volunteered a liking for hearing music. Interes-
tingly, it appears that cues with emotionally positive associations 
are generally unobtrusive. 

Music cues are similar to the ringtones sometimes used for caller 
ID on mobile phones. However, ringtones in the wild are relative-
ly unexplored. <YC-3> comments: “It was fun how everyone had 
a song specific to them. Add’s a little bit of personality. I don’t 
use ringtones, that’s why it was neat for me. Too much trouble to 
do on my phone.” The results of this study validate the usefulness 
of ringtones, in being able to successfully convey information 
about people in a pleasurable way. 

The usage of music cues also seems to reinforce learnability, with 
83% of users in conditions My Choice and Your Choice being 
able to identify who the cue was for, based on self-reported post-
notification questions. This learning effect is also reflected to 
some extent with vibrotactile patterns. The My Choice group was 
the only condition with an appreciable amount of cue identifica-
tion from vibration, demonstrating 25% identification rate from 
vibration cues alone. While not overwhelming, this acts as a 
proof-of-concept for the delivery of ambient information via low 
fidelity haptic channels. Analysis of the before and after vibration 
studies suggest some users are consistent in the way they match 
vibrotactile patterns to sound, with 7 participants responding con-
sistently, when comparing their before and after responses. 75% 
of My Choice was able to correctly map vibrations to sounds and 
then to people. Participants in the Your Choice condition were 
less successful in mapping vibrotactile patterns to music, possibly 
because of the larger number of cues or because they were not as 
familiar with the songs selected for cues. When presented with the 
task of matching vibrations to sounds in the post-study interview, 



participant <MC-3> exclaimed “Oh that’s Cathy!” when she felt 
the vibration associated with the music cue associated with Cathy. 
When comparing error rates for a matching vibration-to-sound 
task from before and after studies, minimal improvements were 
observed, suggesting minimal learning effects. 

This does not necessarily suggest that music cues should always 
be used over nature cues. Rather, it reinforces the idea that when 
designing peripheral cues, it is important to maintain a semantic 
link between the cue and the content being delivered. Nature cues 
could be useful if they had some meaning when associated with 
the object of interest. In the case of buddy peripheral cues, partic-
ipants were much more likely to have semantic associations be-
tween music and friends. 

9.1.2 Personal Control over Cueing Mechanism for 

Unobtrusiveness  

The discussion above suggests that personal selection of cues aids 
both comprehension and unobtrusiveness. In addition, for many 
users, explicit control of the notification modes was important. 
Although personal control has been cited as important in the de-
sign of a number of social mobile systems, these concerns typical-
ly have to do with privacy [21]. In our study, personal control 
over the cueing mechanism was a critical element for controlling 
unobtrusiveness and interruptibility. 

Even though an automatic ambient noise level feature was pro-
vided, many users opted not to use this mode, not even trying it 
before dismissing it. In fact, 12 of the 17 participants did not even 
try the Automatic mode, despite the fact that the phone was put in 
Automatic mode when given to the participants. When asked 
about the automatic mode in the post-study questionnaire, <MC-
4> commented “I didn’t use it. I was afraid to use it since my 
professors this quarter are pretty anal. I kept it mostly on vibrate 
when I was in class, or in normal mode when I wasn’t.” For this 
participant, personal control of the notification mode was impor-
tant because they feared PeopleTone cues being triggered in the 
audio mode in a classroom setting where it might be disruptive. 
Participant <YC-1> expressed a similar concern, saying “I was 
afraid that if I was at church, it wouldn’t work. It would just back-
fire on me and I wanted to have been more sure about it.” Like 
<MC-4>, <YC-1> was afraid of unwanted notifications while at 
church, another social context where an audio notification would 
be unacceptable. It should be noted that both <MC-4> and <YC-
1> considered social contexts where they expected the notifica-
tions to be triggered, in this case as defined by their group’s 
shared interests. In addition to a lack of trust in the application’s 
accuracy for detecting ambient noise in high stakes situations, a 
number of users also expressed uncertainty as to what the system 
considered to be loud or quiet environments. <YC-4> said “I’m 
not too sure what happened or how loud the environment needed 
to be. I’d want to determine how reliable the function is before 
using it and to check how often it looks at the environment.” 
<YC-4>’s comment suggests a potential solution to this problem 
is for some type of system feedback whereby through manually 
user-controlled notification management, the application gains the 
user’s trust, demonstrating that it works well in a variety of envi-
ronments. This could be done with some type of visual indicator 
in the application of the type of cue that would be delivered, 
which the user could check while in different environments. Of 

course, this solution requires the user’s visual attention during the 
familiarization period.  

Still, even with a trustworthy system in place, some users had 
different requirements than those retained by the system. <MC-2> 
commented “Sometimes when it’s quiet, I don’t need it to be 
quiet, like when I’m at home by myself. I think I felt it one time 
but I generally like to keep it on [loud].” The user trusts the Au-
tomatic mode to work as expected, she prefers the mode that plays 
both vibrotactile and audio cues, simply because in certain quiet 
situations, auditory cues will not be irritating to anyone. 

Finally, for some participants, different notification modes offered 
different fidelities of information. <YC-8> commented that “Did 
use the vibrations, but didn’t work out well. I felt it vibrate, but I 
could indicate [who it was] better with sound. The sound lets me 
instantly figure out who it is. With the vibrate, you have to wait 5-
10 seconds to figure out who it is.” Although this comment touch-
es on the issue of learning mappings between the different notifi-
cation modes, <YC-8> expresses a distinct preference for sound 
cues, crediting their higher fidelity. Similarly, <Nature-1> said “I 
wish it had given me louder alerts,” suggesting that some mechan-
ism for controlling the volume would have been useful for some. 

9.1.3 User Information Needs: Peripheral Cues Pro-

vide an Overview 

When our participants were asked about how physically near 
friends needed to be to be considered “nearby,” many people cited 
the mode of transportation as being relevant. For people traveling 
by foot, distances within about 0.5 miles were cited as being 
“nearby.” For people traveling by car, a distance of 2-5 miles was 
considered nearby. Our results from Figure 5 show that our algo-
rithm was able to achieve precise detection within these limits. 
Additionally, 15 of 17 participants reported that PeopleTones’ 
implementation of near was good enough for buddy proximity, 
verifying the results from the dataset analysis. 

The proximity algorithm used by PeopleTones, which detected 
proximity at around 0.2 miles, was accurate enough for user 
needs. When asked about the accuracy of the system, most partic-
ipants commented that it detected “near” for a buddy most of the 
time when the buddy was known to be near, and “far” when far 
away. Activity detection [40] could conceivably be used to adjust 
the cutoffs according to one’s speed of movement, although the 
accuracy reported by users suggests that this may not be neces-
sary. 

Even though PeopleTones’ proximity algorithm was deemed ac-
curate enough, 4 people spontaneously volunteered that they also 
wanted to know the actual distances of their buddies, and 3 of 
those wanted the location. “I’d like if it could tell me exactly how 
close they actually are,” said <MC-2>. <YC-5> offered that “The 
only thing I didn’t like about using this phone was not knowing 
exactly where that person is.” (PeopleTones’s proximity ratio is 
not suitable for computing exact distances or locations, but ratios 
significantly above the “near” cutoff could be used to infer 
“close”.) This information need is not surprising, since such in-
formation would inform, for example, a decision on whether to 
call the person to arrange a meeting. This information need not be 
provided by the cue itself. Schneiderman’s Visual-Information 
Seeking Mantra “Overview first, zoom and filter, then details-on-
demand” [37] suggests that the peripheral cue should be treated as 
the overview, with additional information displayed in the user 



interface providing details on demand. Also, because the cue is an 
ephemeral overview, and may not be fully comprehended, the 
visual interface provides valuable redundancy. For this reason, the 
PeopleTones user interface used by the participants displayed the 
near/far state of the buddy and the time of the inference. <MC-4> 
volunteered “If I wanted to know if anyone was nearby, I liked 
how it showed the last time it had checked next to their name.”  

At the same time, displaying distance could be perceived as an 
invasion of privacy. Surprisingly, only 2 of 17 users reported 
privacy as a concern. This could be because the groups of friends 
were tightly knit, or because exact distance was not shown. The 2 
participants concerned with privacy suggested providing user 
control of who could see their location.  

9.2 Mobile Phones Are a Viable Platform for 

Context-Aware Peripheral Cue Applications 

As the above results convey, mobile phones appear to be a viable 
platform for proactive context awareness when there are asymme-
tric tradeoffs to be leveraged. In the case of an application like 
PeopleTones, missing an event of interest, whether due to sensing 
or notification, is acceptable. There were few reports of false neg-
atives and only one report of a socially problematic cue. There 
were also few reports of false negatives. 

Yet, several other factors unrelated to conservative design contri-
bute to the viability of peripherals cues on phones. Mobile phones 
and the sounds they make are socially accepted in many settings, 
aiding unobtrusiveness. As personal devices they enable personal 
control, which aids the comprehension of cues, creates the posi-
tive associations that permit managing the periphery, and ensures 
their unobtrusiveness when silence is paramount. 

Additionally, with the use of our novel DSP techniques, the com-
modity vibration actuators found on mobile phones are an ade-
quate channel for etiquette-sensitive situations. For music-based 
vibrations, people were very good at matching the vibration pat-
terns to their songs. One group, the My Choice group, found the 
vibrations to be useful in the wild, serving as the delivery mechan-
ism about 16% of the time. 

Likewise, several factors unrelated to conservative design contri-
bute to the viability of context sensing on mobile phones. Direct 
phone-to-phone comparison of cell tower readings not only 
achieves ubiquity but also avoids a possible source of error by not 
calibrating to a third frame of reference (absolute location). Em-
phasizing the elimination of false positives is apparently effective 
because the lingering of buddies eventually leads to successful 
recall. Timeliness is not a critical feature of buddy proximity, but 
some users did complain about the occasional slowness of the 
reporting, suggesting that dwelling in a place eventually leads to a 
positive report. 

As corroborating evidence, the participants told many stories 
about how PeopleTones affected their behaviors or dispositions. 
Here are a few typical quotes, at most one per participant: 

 “One time at the library, I wanted to eat with someone and 

so I went outside to call someone. The phone vibrated. I just 

called the person to meet up.” 

 “Whenever I drive to school I found out where <YC-7> 

works because I always get her alert when I’m driving on 

Miramar. Oh, so she works around here?” 

“I thought it was so neat every time it would ring. It made me 

really happy. Oh! They’re right here, or oh! They’re right 

there.” 

“It was cool to see who was home by the time I got home. I 

could tell if <YC-1> was home when I passed by University. 

So if we were going to go eat or something I could ask her. 

Oh she’s home, so let’s call her and see if she wants to eat.” 

10. CONCLUSION  

Employing mobile phones for proactive context awareness holds 
promise due to the ubiquity of mobiles and their infrastructure, yet 
phones’ necessarily inexpensive construction presents challenges 
like imprecise sensors, clumsy actuators, and limited battery life. 
For the case of detecting and reporting on “nice to know” situa-
tions such as the proximity of a friend, the precision of sensing 
must be high enough to minimize annoying false notifications, 
and the notifications cannot be too obtrusive to the user or those 
in the vicinity. We explored these issues through the PeopleTones 
buddy proximity application. 

We have contributed (1) an algorithm for detecting proximity, (2) 
techniques for reducing sensor noise and power consumption, and 
(3) a method for generating unobtrusive peripheral cues. 

For detecting proximity we compared the cell towers seen by the 
mobile phones to estimate proximity. GSM’s long range and ran-
dom characteristics means that a phone will report false positives, 
so we filter the proximity data using a simple state machine. With 
these techniques we are able to achieve 99% precision for a ratio 
threshold of 0.4 and fair recall. The counter also manages power 
consumption by sampling at a slow rate when the state machine is 
in the typical far or near states. Power is further conserved by not 
reporting when the GSM signals are weak. 

We took a peripheral cue approach to providing notifications, 
using both short audio and corresponding etiquette-friendly vibro-
tactile cues. To achieve a language of corresponding vibrotactile 
cues, we introduced an offline digital signal processing technique 
that captures the essence of audio cues, whose patterns are rea-
lized on the phone by generating range of amplitudes using a 
technique similar to pulse width modulation. 

Our controlled studies of proximity detection based on wardriving 
data revealed high precision, especially with the 2-bit counter, but 
only modest recall. In real world settings, where people dwell at 
locations for significant periods, recall appears to be much higher 
because the algorithm has more chances to detect proximity.  

The user study revealed that peripheral cues are an effective, un-
obtrusive mechanism for notifying people of such inferences. 
Although haptics have often been suggested as a promising am-
bient delivery mechanism, sound was the preferred medium, pos-
sibly because of its higher fidelity. Our method for encoding 
sounds into vibration patterns on the limited vibration motors of 
mobile phones produces a representation of sound that is sensible 
to many, but not all people. An underlying theme of the study is 
the importance of personal control for peripheral cues. Peripheral 
cues in the wild are better comprehended and less obtrusive if 
derived from music and are chosen by the intended recipient. 
Moreover, people have an overriding need to directly control the 
modality of cue delivery to manage etiquette. Context-adaptive 
cueing requires support and mechanisms for gaining a person’s 
trust. Peripheral cues can provide a sparse overview of the under-



lying situation, but the ability to get details on demand is impor-
tant to users, especially since the cues are ephemeral and some-
times not understood.  

We conclude that despite the challenges presented by appropriat-
ing commodity sensors and actuators, that mobile phones are a 
suitable platform for proactive context awareness, at least for the 
“nice to know” case. Likewise, peripheral cues are a viable notifi-
cation modality on mobile phones, despite their simple on/off 
actuators. Our current ongoing research is investigating the prom-
ise of other low-cost haptic communication techniques. 
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