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ABSTRACT 
We present Skinput, a technology that appropriates the hu-
man body for acoustic transmission, allowing the skin to be 
used as an input surface. In particular, we resolve the loca-
tion of finger taps on the arm and hand by analyzing me-
chanical vibrations that propagate through the body. We 
collect these signals using a novel array of sensors worn as 
an armband. This approach provides an always available, 
naturally portable, and on-body finger input system. We 
assess the capabilities, accuracy and limitations of our tech-
nique through a two-part, twenty-participant user study. To 
further illustrate the utility of our approach, we conclude 
with several proof-of-concept applications we developed.  
Author Keywords 
Bio-acoustics, finger input, buttons, gestures, on-body inte-
raction, projected displays, audio interfaces. 
ACM Classification Keywords 
H.5.2 [User Interfaces]: Input devices and strategies; B.4.2 
[Input/Output Devices]: Channels and controllers 
General terms: Human Factors  
INTRODUCTION 
Devices with significant computational power and capabili-
ties can now be easily carried on our bodies. However, their 
small size typically leads to limited interaction space (e.g., 
diminutive screens, buttons, and jog wheels) and conse-
quently diminishes their usability and functionality. Since 
we cannot simply make buttons and screens larger without 
losing the primary benefit of small size, we consider alter-
native approaches that enhance interactions with small mo-
bile systems. 
One option is to opportunistically appropriate surface area 
from the environment for interactive purposes. For exam-
ple, [10] describes a technique that allows a small mobile 
device to turn tables on which it rests into a gestural finger 
input canvas. However, tables are not always present, and 
in a mobile context, users are unlikely to want to carry ap-

propriated surfaces with them (at this point, one might as 
well just have a larger device). However, there is one sur-
face that has been previous overlooked as an input canvas, 
and one that happens to always travel with us: our skin. 
Appropriating the human body as an input device is appeal-
ing not only because we have roughly two square meters of 
external surface area, but also because much of it is easily 
accessible by our hands (e.g., arms, upper legs, torso). Fur-
thermore, proprioception – our sense of how our body is 
configured in three-dimensional space – allows us to accu-
rately interact with our bodies in an eyes-free manner. For 
example, we can readily flick each of our fingers, touch the 
tip of our nose, and clap our hands together without visual 
assistance. Few external input devices can claim this accu-
rate, eyes-free input characteristic and provide such a large 
interaction area. 
In this paper, we present our work on Skinput – a method 
that allows the body to be appropriated for finger input us-
ing a novel, non-invasive, wearable bio-acoustic sensor.  
The contributions of this paper are: 
1) We describe the design of a novel, wearable sensor for 

bio-acoustic signal acquisition (Figure 1). 
2) We describe an analysis approach that enables our sys-

tem to resolve the location of finger taps on the body. 

Figure 1. A wearable, bio-acoustic sensing array built into 
an armband. Sensing elements detect vibrations transmit-
ted through the body. The two sensor packages shown 
above each contain five, specially weighted, cantilevered 
piezo films, responsive to a particular frequency range. 
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3) We assess the robustness and limitations of this system 
through a user study. 

4) We explore the broader space of bio-acoustic input 
through prototype applications and additional experi-
mentation. 

RELATED WORK 
Always-Available Input 
The primary goal of Skinput is to provide an always-
available mobile input system – that is, an input system that 
does not require a user to carry or pick up a device. A num-
ber of alternative approaches have been proposed that oper-
ate in this space. Techniques based on computer vision are 
popular (e.g. [3,26,27], see [7] for a recent survey). These, 
however, are computationally expensive and error prone in 
mobile scenarios (where, e.g., non-input optical flow is 
prevalent). Speech input (e.g. [13,15]) is a logical choice 
for always-available input, but is limited in its precision in 
unpredictable acoustic environments, and suffers from pri-
vacy and scalability issues in shared environments. 
Other approaches have taken the form of wearable compu-
ting. This typically involves a physical input device built in 
a form considered to be part of one’s clothing. For example, 
glove-based input systems (see [25] for a review) allow 
users to retain most of their natural hand movements, but 
are cumbersome, uncomfortable, and disruptive to tactile 
sensation. Post and Orth [22] present a “smart fabric” sys-
tem that embeds sensors and conductors into fabric, but 
taking this approach to always-available input necessitates 
embedding technology in all clothing, which would be pro-
hibitively complex and expensive. 
The SixthSense project [19] proposes a mobile, always-
available input/output capability by combining projected 
information with a color-marker-based vision tracking sys-
tem. This approach is feasible, but suffers from serious oc-
clusion and accuracy limitations. For example, determining 
whether, e.g., a finger has tapped a button, or is merely ho-
vering above it, is extraordinarily difficult. In the present 
work, we briefly explore the combination of on-body sens-
ing with on-body projection. 
Bio-Sensing 
Skinput leverages the natural acoustic conduction properties 
of the human body to provide an input system, and is thus 
related to previous work in the use of biological signals for 
computer input. Signals traditionally used for diagnostic 
medicine, such as heart rate and skin resistance, have been 
appropriated for assessing a user’s emotional state (e.g. 
[16,17,20]). These features are generally subconsciously-
driven and cannot be controlled with sufficient precision for 
direct input. Similarly, brain sensing technologies such as 
electroencephalography (EEG) and functional near-infrared 
spectroscopy (fNIR) have been used by HCI researchers to 
assess cognitive and emotional state (e.g. [9,11,14]); this 
work also primarily looked at involuntary signals. In con-
trast, brain signals have been harnessed as a direct input for 
use by paralyzed patients (e.g. [8,18]), but direct brain-
computer interfaces (BCIs) still lack the bandwidth required 

for everyday computing tasks, and require levels of focus, 
training, and concentration that are incompatible with typi-
cal computer interaction. 
There has been less work relating to the intersection of fin-
ger input and biological signals. Researchers have har-
nessed the electrical signals generated by muscle activation 
during normal hand movement through electromyography 
(EMG) (e.g. [23,24]). At present, however, this approach 
typically requires expensive amplification systems and the 
application of conductive gel for effective signal acquisi-
tion, which would limit the acceptability of this approach 
for most users. 
The input technology most related to our own is that of 
Amento et al. [2], who placed contact microphones on a 
user’s wrist to assess finger movement. However, this work 
was never formally evaluated, as is constrained to finger 
motions in one hand. The Hambone system [6] employs a 
similar setup, and through an HMM, yields classification 
accuracies around 90% for four gestures (e.g., raise heels, 
snap fingers). Performance of false positive rejection re-
mains untested in both systems at present. Moreover, both 
techniques required the placement of sensors near the area 
of interaction (e.g., the wrist), increasing the degree of in-
vasiveness and visibility. 
Finally, bone conduction microphones and headphones – 
now common consumer technologies - represent an addi-
tional bio-sensing technology that is relevant to the present 
work. These leverage the fact that sound frequencies rele-
vant to human speech propagate well through bone. Bone 
conduction microphones are typically worn near the ear, 
where they can sense vibrations propagating from the 
mouth and larynx during speech. Bone conduction head-
phones send sound through the bones of the skull and jaw 
directly to the inner ear, bypassing transmission of sound 
through the air and outer ear, leaving an unobstructed path 
for environmental sounds. 
Acoustic Input 
Our approach is also inspired by systems that leverage 
acoustic transmission through (non-body) input surfaces. 
Paradiso et al. [21] measured the arrival time of a sound at 
multiple sensors to locate hand taps on a glass window. 
Ishii et al. [12] use a similar approach to localize a ball hit-
ting a table, for computer augmentation of a real-world 
game. Both of these systems use acoustic time-of-flight for 
localization, which we explored, but found to be insuffi-
ciently robust on the human body, leading to the finger-
printing approach described in this paper. 
SKINPUT 
To expand the range of sensing modalities for always-
available input systems, we introduce Skinput, a novel input 
technique that allows the skin to be used as a finger input 
surface. In our prototype system, we choose to focus on the 
arm (although the technique could be applied elsewhere). 
This is an attractive area to appropriate as it provides consi-
derable surface area for interaction, including a contiguous 
and flat area for projection (discussed subsequently). Fur-



  

thermore, the forearm and hands contain a complex assem-
blage of bones that increases acoustic distinctiveness of 
different locations. To capture this acoustic information, we 
developed a wearable armband that is non-invasive and 
easily removable (Figures 1 and 5).  
In this section, we discuss the mechanical phenomena that 
enables Skinput, with a specific focus on the mechanical 
properties of the arm. Then we will describe the Skinput 
sensor and the processing techniques we use to segment, 
analyze, and classify bio-acoustic signals. 
Bio-Acoustics 
When a finger taps the skin, several distinct forms of acous-
tic energy are produced. Some energy is radiated into the 
air as sound waves; this energy is not captured by the Skin-
put system. Among the acoustic energy transmitted through 
the arm, the most readily visible are transverse waves, 
created by the displacement of the skin from a finger impact 
(Figure 2). When shot with a high-speed camera, these ap-
pear as ripples, which propagate outward from the point of 
contact (see video). The amplitude of these ripples is corre-
lated to both the tapping force and to the volume and com-
pliance of soft tissues under the impact area. In general, 
tapping on soft regions of the arm creates higher amplitude 
transverse waves than tapping on boney areas (e.g., wrist, 
palm, fingers), which have negligible compliance.  
In addition to the energy that propagates on the surface of 
the arm, some energy is transmitted inward, toward the ske-
leton (Figure 3). These longitudinal (compressive) waves 
travel through the soft tissues of the arm, exciting the bone, 
which is much less deformable then the soft tissue but can 
respond to mechanical excitation by rotating and translating 
as a rigid body. This excitation vibrates soft tissues sur-
rounding the entire length of the bone, resulting in new lon-
gitudinal waves that propagate outward to the skin. 
We highlight these two separate forms of conduction – 
transverse waves moving directly along the arm surface, 
and longitudinal waves moving into and out of the bone 
through soft tissues – because these mechanisms carry 
energy at different frequencies and over different distances. 
Roughly speaking, higher frequencies propagate more rea-
dily through bone than through soft tissue, and bone con-
duction carries energy over larger distances than soft tissue 
conduction. While we do not explicitly model the specific 
mechanisms of conduction, or depend on these mechanisms 
for our analysis, we do believe the success of our technique 
depends on the complex acoustic patterns that result from 
mixtures of these modalities.  
Similarly, we also believe that joints play an important role 
in making tapped locations acoustically distinct. Bones are 
held together by ligaments, and joints often include addi-
tional biological structures such as fluid cavities. This 
makes joints behave as acoustic filters. In some cases, these 
may simply dampen acoustics; in other cases, these will 
selectively attenuate specific frequencies, creating location-
specific acoustic signatures.  

Sensing 
To capture the rich variety of acoustic information de-
scribed in the previous section, we evaluated many sensing 
technologies, including bone conduction microphones, con-
ventional microphones coupled with stethoscopes [10], pie-
zo contact microphones [2], and accelerometers. However, 
these transducers were engineered for very different appli-
cations than measuring acoustics transmitted through the 
human body. As such, we found them to be lacking in sev-
eral significant ways. Foremost, most mechanical sensors 
are engineered to provide relatively flat response curves 
over the range of frequencies that is relevant to our signal. 
This is a desirable property for most applications where a 
faithful representation of an input signal – uncolored by the 
properties of the transducer – is desired. However, because 
only a specific set of frequencies is conducted through the 
arm in response to tap input, a flat response curve leads to 
the capture of irrelevant frequencies and thus to a high sig-
nal-to-noise ratio. 
While bone conduction microphones might seem a suitable 
choice for Skinput, these devices are typically engineered 
for capturing human voice, and filter out energy below the 
range of human speech (whose lowest frequency is around 
85Hz). Thus most sensors in this category were not espe-
cially sensitive to lower-frequency signals (e.g., 25Hz), 
which we found in our empirical pilot studies to be vital in 
characterizing finger taps. 
To overcome these challenges, we moved away from a sin-
gle sensing element with a flat response curve, to an array 
of highly tuned vibration sensors. Specifically, we employ 
small, cantilevered piezo films (MiniSense100, Measure-
ment Specialties, Inc.). By adding small weights to the end 
of the cantilever, we are able to alter the resonant frequen-
cy, allowing the sensing element to be responsive to a 
unique, narrow, low-frequency band of the acoustic spec-

 
Figure 2. Transverse wave propagation: Finger impacts 
displace the skin, creating transverse waves (ripples). The 
sensor is activated as the wave passes underneath it. 

Figure 3. Longitudinal wave propagation: Finger impacts 
create longitudinal (compressive) waves that cause internal 
skeletal structures to vibrate. This, in turn, creates longi-
tudinal waves that emanate outwards from the bone (along 
its entire length) toward the skin.  



 

 
Figure 5. Prototype armband. 

 

Upper Array 25 Hz 27 Hz 30 Hz 38 Hz 78 Hz 
Lower Array 25 Hz 27 Hz 40 Hz 44 Hz 64 Hz 

Table 1. Resonant frequencies of individual elements  
in the two sensor packages.  

 
Figure 4. Response curve (relative sensitivty) of the  

sensing element that resonates at 78 Hz.  

trum. Adding more mass lowers the range of excitation to 
which a sensor responds; we weighted each element such 
that it aligned with particular frequencies that pilot studies 
showed to be useful in characterizing bio-acoustic input.  
Figure 4 shows the response curve for one of our sensors, 
tuned to a resonant frequency of 78Hz. The curve shows a 
~14dB drop-off ±20Hz away from the resonant frequency. 
Additionally, the cantilevered sensors were naturally insen-
sitive to forces parallel to the skin (e.g., shearing motions 
caused by stretching). Thus, the skin stretch induced by 
many routine movements (e.g., reaching for a doorknob) 
tends to be attenuated. However, the sensors are highly res-
ponsive to motion perpendicular to the skin plane – perfect 
for capturing transverse surface waves (Figure 2) and longi-
tudinal waves emanating from interior structures (Figure 3).  
Finally, our sensor design is relatively inexpensive and can 
be manufactured in a very small form factor (e.g., MEMS), 
rendering it suitable for inclusion in future mobile devices 
(e.g., an arm-mounted audio player).  
Armband Prototype 
Our final prototype, shown in Figures 1 and 5, features two 
arrays of five sensing elements, incorporated into an arm-
band form factor. The decision to have two sensor packages 
was motivated by our focus on the arm for input. In particu-
lar, when placed on the upper arm (above the elbow), we 
hoped to collect acoustic information from the fleshy bicep 
area in addition to the firmer area on the underside of the 
arm, with better acoustic coupling to the Humerus, the main 
bone that runs from shoulder to elbow. When the sensor 
was placed below the elbow, on the forearm, one package 
was located near the Radius, the bone that runs from the 
lateral side of the elbow to the thumb side of the wrist, and 
the other near the Ulna, which runs parallel to this on the 
medial side of the arm closest to the body. Each location 
thus provided slightly different acoustic coverage and in-
formation, helpful in disambiguating input location.  
Based on pilot data collection, we selected a different set of 
resonant frequencies for each sensor package (Table 1). We 
tuned the upper sensor package to be more sensitive to low-
er frequency signals, as these were more prevalent in fle-
shier areas. Conversely, we tuned the lower sensor array to 
be sensitive to higher frequencies, in order to better capture 
signals transmitted though (denser) bones. 

Processing 
In our prototype system, we employ a Mackie Onyx 1200F 
audio interface to digitally capture data from the ten sensors 
(http://mackie.com). This was connected via Firewire to a 
conventional desktop computer, where a thin client written 
in C interfaced with the device using the Audio Stream In-
put/Output (ASIO) protocol.  
Each channel was sampled at 5.5kHz, a sampling rate that 
would be considered too low for speech or environmental 
audio, but was able to represent the relevant spectrum of 
frequencies transmitted through the arm. This reduced sam-
ple rate (and consequently low processing bandwidth) 
makes our technique readily portable to embedded proces-
sors. For example, the ATmega168 processor employed by 
the Arduino platform can sample analog readings at 77kHz 
with no loss of precision, and could therefore provide the 
full sampling power required for Skinput (55kHz total). 
Data was then sent from our thin client over a local socket 
to our primary application, written in Java. This program 
performed three key functions. First, it provided a live visu-
alization of the data from our ten sensors, which was useful 
in identifying acoustic features (Figure 6). Second, it seg-
mented inputs from the data stream into independent in-
stances (taps). Third, it classified these input instances. 
The audio stream was segmented into individual taps using 
an absolute exponential average of all ten channels (Figure 
6, red waveform). When an intensity threshold was ex-
ceeded (Figure 6, upper blue line), the program recorded 
the timestamp as a potential start of a tap. If the intensity 
did not fall below a second, independent “closing” thre-
shold (Figure 6, lower purple line) between 100ms and 
700ms after the onset crossing (a duration we found to be 
the common for finger impacts), the event was discarded. If 
start and end crossings were detected that satisfied these 
criteria, the acoustic data in that period (plus a 60ms buffer 
on either end) was considered an input event (Figure 6, ver-



  

Figure 6: Ten channels of acoustic data generated by three
finger taps on the forearm, followed by three taps on the wrist.
The exponential average of the channels is shown in red. Seg-
mented input windows are highlighted in green. Note how
different sensing elements are actuated by the two locations. 

tical green regions). Although simple, this heuristic proved 
to be highly robust, mainly due to the extreme noise sup-
pression provided by our sensing approach. 
After an input has been segmented, the waveforms are ana-
lyzed. The highly discrete nature of taps (i.e. point impacts) 
meant acoustic signals were not particularly expressive over 
time (unlike gestures, e.g., clenching of the hand). Signals 
simply diminished in intensity overtime. Thus, features are 
computed over the entire input window and do not capture 
any temporal dynamics.  
We employ a brute force machine learning approach, com-
puting 186 features in total, many of which are derived 
combinatorially. For gross information, we include the av-
erage amplitude, standard deviation and total (absolute) 
energy of the waveforms in each channel (30 features). 
From these, we calculate all average amplitude ratios be-
tween channel pairs (45 features). We also include an aver-
age of these ratios (1 feature). We calculate a 256-point 
FFT for all ten channels, although only the lower ten values 
are used (representing the acoustic power from 0Hz to 
193Hz), yielding 100 features. These are normalized by the 
highest-amplitude FFT value found on any channel. We 
also include the center of mass of the power spectrum with-
in the same 0Hz to 193Hz range for each channel, a rough 
estimation of the fundamental frequency of the signal dis-
placing each sensor (10 features). Subsequent feature selec-
tion established the all-pairs amplitude ratios and certain 
bands of the FFT to be the most predictive features. 
These 186 features are passed to a Support Vector Machine 
(SVM) classifier. A full description of SVMs is beyond the 
scope of this paper (see [4] for a tutorial). Our software uses 
the implementation provided in the Weka machine learning 
toolkit [28]. It should be noted, however, that other, more 
sophisticated classification techniques and features could be 
employed. Thus, the results presented in this paper should 
be considered a baseline.  
Before the SVM can classify input instances, it must first be 
trained to the user and the sensor position. This stage re-
quires the collection of several examples for each input 
location of interest. When using Skinput to recognize live 
input, the same 186 acoustic features are computed on-the-

fly for each segmented input. These are fed into the trained 
SVM for classification. We use an event model in our soft-
ware – once an input is classified, an event associated with 
that location is instantiated. Any interactive features bound 
to that event are fired. As can be seen in our video, we rea-
dily achieve interactive speeds. 
EXPERIMENT 
Participants 
To evaluate the performance of our system, we recruited 13 
participants (7 female) from the Greater Seattle area. These 
participants represented a diverse cross-section of potential 
ages and body types. Ages ranged from 20 to 56 (mean 
38.3), and computed body mass indexes (BMIs) ranged 
from 20.5 (normal) to 31.9 (obese). 
Experimental Conditions 
We selected three input groupings from the multitude of 
possible location combinations to test. We believe that 
these groupings, illustrated in Figure 7, are of particular 
interest with respect to interface design, and at the same 
time, push the limits of our sensing capability. From these 
three groupings, we derived five different experimental 
conditions, described below. 
Fingers (Five Locations) 
One set of gestures we tested had participants tapping on 
the tips of each of their five fingers (Figure 6, “Fingers”). 
The fingers offer interesting affordances that make them 
compelling to appropriate for input. Foremost, they provide 
clearly discrete interaction points, which are even already 
well-named (e.g., ring finger). In addition to five finger tips, 
there are 14 knuckles (five major, nine minor), which, taken 
together, could offer 19 readily identifiable input locations 
on the fingers alone. Second, we have exceptional finger-to-
finger dexterity, as demonstrated when we count by tapping 
on our fingers. Finally, the fingers are linearly ordered, 
which is potentially useful for interfaces like number entry, 
magnitude control (e.g., volume), and menu selection. 
At the same time, fingers are among the most uniform ap-
pendages on the body, with all but the thumb sharing a sim-
ilar skeletal and muscular structure. This drastically reduces 
acoustic variation and makes differentiating among them 
difficult. Additionally, acoustic information must cross as 
many as five (finger and wrist) joints to reach the forearm, 
which further dampens signals. For this experimental condi-
tion, we thus decided to place the sensor arrays on the fo-
rearm, just below the elbow. 
Despite these difficulties, pilot experiments showed measu-
reable acoustic differences among fingers, which we theor-
ize is primarily related to finger length and thickness, inte-
ractions with the complex structure of the wrist bones, and 
variations in the acoustic transmission properties of the 
muscles extending from the fingers to the forearm.  
Whole Arm (Five Locations) 
Another gesture set investigated the use of five input loca-
tions on the forearm and hand: arm, wrist, palm, thumb and 
middle finger (Figure 7, “Whole Arm”). We selected these 



 

 
Figure 7: The three input location sets evaluated in the study.

locations for two important reasons. First, they are distinct 
and named parts of the body (e.g., “wrist”). This allowed 
participants to accurately tap these locations without train-
ing or markings. Additionally, these locations proved to be 
acoustically distinct during piloting, with the large spatial 
spread of input points offering further variation. 
We used these locations in three different conditions. One 
condition placed the sensor above the elbow, while another 
placed it below. This was incorporated into the experiment 
to measure the accuracy loss across this significant articula-
tion point (the elbow). Additionally, participants repeated 
the lower placement condition in an eyes-free context: par-
ticipants were told to close their eyes and face forward, 
both for training and testing. This condition was included to 
gauge how well users could target on-body input locations 
in an eyes-free context (e.g., driving).  
Forearm (Ten Locations) 
In an effort to assess the upper bound of our approach’s 
sensing resolution, our fifth and final experimental condi-
tion used ten locations on just the forearm (Figure 6, “Fo-
rearm”). Not only was this a very high density of input lo-
cations (unlike the whole-arm condition), but it also relied 
on an input surface (the forearm) with a high degree of 
physical uniformity (unlike, e.g., the hand). We expected 
that these factors would make acoustic sensing difficult. 
Moreover, this location was compelling due to its large and 
flat surface area, as well as its immediate accessibility, both 
visually and for finger input. Simultaneously, this makes for 
an ideal projection surface for dynamic interfaces. 
To maximize the surface area for input, we placed the sen-
sor above the elbow, leaving the entire forearm free. Rather 
than naming the input locations, as was done in the pre-
viously described conditions, we employed small, colored 
stickers to mark input targets. This was both to reduce con-
fusion (since locations on the forearm do not have common 
names) and to increase input consistency. As mentioned 
previously, we believe the forearm is ideal for projected 
interface elements; the stickers served as low-tech place-
holders for projected buttons. 

Design and Setup  
We employed a within-subjects design, with each partici-
pant performing tasks in each of the five conditions in ran-
domized order: five fingers with sensors below elbow; five 
points on the whole arm with the sensors above the elbow; 
the same points with sensors below the elbow, both sighted 
and blind; and ten marked points on the forearm with the 
sensors above the elbow. 
Participants were seated in a conventional office chair, in 
front of a desktop computer that presented stimuli. For con-
ditions with sensors below the elbow, we placed the arm-
band ~3cm away from the elbow, with one sensor package 
near the radius and the other near the ulna. For conditions 
with the sensors above the elbow, we placed the armband 
~7cm above the elbow, such that one sensor package rested 
on the biceps. Right-handed participants had the armband 
placed on the left arm, which allowed them to use their do-
minant hand for finger input. For the one left-handed partic-
ipant, we flipped the setup, which had no apparent effect on 
the operation of the system. Tightness of the armband was 
adjusted to be firm, but comfortable. While performing 
tasks, participants could place their elbow on the desk, 
tucked against their body, or on the chair’s adjustable ar-
mrest; most chose the latter. 
Procedure 
For each condition, the experimenter walked through the 
input locations to be tested and demonstrated finger taps on 
each. Participants practiced duplicating these motions for 
approximately one minute with each gesture set. This al-
lowed participants to familiarize themselves with our nam-
ing conventions (e.g. “pinky”, “wrist”), and to practice tap-
ping their arm and hands with a finger on the opposite hand. 
It also allowed us to convey the appropriate tap force to 
participants, who often initially tapped unnecessarily hard. 
To train the system, participants were instructed to com-
fortably tap each location ten times, with a finger of their 
choosing. This constituted one training round. In total, three 
rounds of training data were collected per input location set 
(30 examples per location, 150 data points total). An excep-
tion to this procedure was in the case of the ten forearm 
locations, where only two rounds were collected to save 
time (20 examples per location, 200 data points total). Total 
training time for each experimental condition was approx-
imately three minutes. 
We used the training data to build an SVM classifier. Dur-
ing the subsequent testing phase, we presented participants 
with simple text stimuli (e.g. “tap your wrist”), which in-
structed them where to tap. The order of stimuli was ran-
domized, with each location appearing ten times in total. 
The system performed real-time segmentation and classifi-
cation, and provided immediate feedback to the participant 
(e.g. “you tapped your wrist”). We provided feedback so 
that participants could see where the system was making 
errors (as they would if using a real application). If an input 
was not segmented (i.e. the tap was too quiet), participants 
could see this and would simply tap again. Overall, seg-



  

Figure 9. Higher accuracies can be achieved by collapsing 
the ten input locations into groups. A-E and G were 
created using a design-centric strategy. F was created fol-
lowing analysis of per-location accuracy data. 

 
Figure 8. Accuracy of the three whole-arm-centric  

conditions. Error bars represent standard deviation. 

mentation error rates were negligible in all conditions, and 
not included in further analysis.  
RESULTS 
In this section, we report on the classification accuracies for 
the test phases in the five different conditions. Overall, 
classification rates were high, with an average accuracy 
across conditions of 87.6%. Additionally, we present pre-
liminary results exploring the correlation between classifi-
cation accuracy and factors such as BMI, age, and sex. 
Five Fingers 
Despite multiple joint crossings and ~40cm of separation 
between the input targets and sensors, classification accura-
cy remained high for the five-finger condition, averaging 
87.7% (SD=10.0%, chance=20%) across participants. Seg-
mentation, as in other conditions, was essentially perfect.  
Inspection of the confusion matrices showed no systematic 
errors in the classification, with errors tending to be evenly 
distributed over the other digits. When classification was 
incorrect, the system believed the input to be an adjacent 
finger 60.5% of the time; only marginally above prior prob-
ability (40%). This suggests there are only limited acoustic 
continuities between the fingers. The only potential excep-
tion to this was in the case of the pinky, where the ring fin-
ger constituted 63.3% percent of the misclassifications. 
Whole Arm 
Participants performed three conditions with the whole-arm 
location configuration. The below-elbow placement per-
formed the best, posting a 95.5% (SD=5.1%, chance=20%) 
average accuracy. This is not surprising, as this condition 
placed the sensors closer to the input targets than the other 
conditions. Moving the sensor above the elbow reduced 
accuracy to 88.3% (SD=7.8%, chance=20%), a drop of 
7.2%. This is almost certainly related to the acoustic loss at 
the elbow joint and the additional 10cm of distance between 
the sensor and input targets. Figure 8 shows these results. 
The eyes-free input condition yielded lower accuracies  
than other conditions, averaging 85.0% (SD=9.4%, 
chance=20%). This represents a 10.5% drop from its vision-
assisted, but otherwise identical counterpart condition. It 
was apparent from watching participants complete this con-
dition that targeting precision was reduced. In sighted con-
ditions, participants appeared to be able to tap locations 
with perhaps a 2cm radius of error. Although not formally 

captured, this margin of error appeared to double or triple 
when the eyes were closed. We believe that additional train-
ing data, which better covers the increased input variability, 
would remove much of this deficit. We would also caution 
designers developing eyes-free, on-body interfaces to care-
fully consider the locations participants can tap accurately. 
Forearm 
Classification accuracy for the ten-location forearm condi-
tion stood at 81.5% (SD=10.5%, chance=10%), a surpri-
singly strong result for an input set we devised to push our 
system’s sensing limit (K=0.72, considered very strong). 
Following the experiment, we considered different ways to 
improve accuracy by collapsing the ten locations into larger 
input groupings. The goal of this exercise was to explore 
the tradeoff between classification accuracy and number of 
input locations on the forearm, which represents a particu-
larly valuable input surface for application designers. We 
grouped targets into sets based on what we believed to be 
logical spatial groupings (Figure 9, A-E and G). In addition 
to exploring classification accuracies for layouts that we 
considered to be intuitive, we also performed an exhaustive 
search (programmatically) over all possible groupings. For 
most location counts, this search confirmed that our intui-
tive groupings were optimal; however, this search revealed 
one plausible, although irregular, layout with high accuracy 
at six input locations (Figure 9, F). 
Unlike in the five-fingers condition, there appeared to be 
shared acoustic traits that led to a higher likelihood of con-
fusion with adjacent targets than distant ones. This effect 
was more prominent laterally than longitudinally. Figure 9 
illustrates this with lateral groupings consistently out-
performing similarly arranged, longitudinal groupings (B 
and C vs. D and E). This is unsurprising given the mor-
phology of the arm, with a high degree of bilateral symme-
try along the long axis. 
BMI Effects 
Early on, we suspected that our acoustic approach was sus-
ceptible to variations in body composition. This included, 
most notably, the prevalence of fatty tissues and the densi-
ty/mass of bones. These, respectively, tend to dampen or 
facilitate the transmission of acoustic energy in the body. 



 

 
Figure 10. Accuracy was significantly lower for 

participants with BMIs above the 50th percentile. 

To assess how these variations affected our sensing accura-
cy, we calculated each participant’s body mass index (BMI) 
from self-reported weight and height. Data and observations 
from the experiment suggest that high BMI is correlated 
with decreased accuracies. The participants with the three 
highest BMIs (29.2, 29.6, and 31.9 – representing border-
line obese to obese) produced the three lowest average ac-
curacies. Figure 10 illustrates this significant disparity - 
here participants are separated into two groups, those with 
BMI greater and less than the US national median, age and 
sex adjusted [5] (F1,12=8.65, p=.013). 
Other factors such as age and sex, which may be correlated 
to BMI in specific populations, might also exhibit a correla-
tion with classification accuracy. For example, in our par-
ticipant pool, males yielded higher classification accuracies 
than females, but we expect that this is an artifact of BMI 
correlation in our sample, and probably not an effect of sex 
directly. 
SUPPLEMENTAL EXPERIMENTS 
We conducted a series of smaller, targeted experiments to 
explore the feasibility of our approach for other applica-
tions. In the first additional experiment, which tested per-
formance of the system while users walked and jogged, we 
recruited one male (age 23) and one female (age 26) for a 
single-purpose experiment. For the rest of the experiments, 
we recruited seven new participants (3 female, mean age 
26.9) from within our institution. In all cases, the sensor 
armband was placed just below the elbow. Similar to the 
previous experiment, each additional experiment consisted 
of a training phase, where participants provided between 10 
and 20 examples for each input type, and a testing phase, in 
which participants were prompted to provide a particular 
input (ten times per input type). As before, input order was 
randomized; segmentation and classification were per-
formed in real-time. 
Walking and Jogging 
As discussed previously, acoustically-driven input tech-
niques are often sensitive to environmental noise. In regard 
to bio-acoustic sensing, with sensors coupled to the body, 
noise created during other motions is particularly trouble-
some, and walking and jogging represent perhaps the most 
common types of whole-body motion. This experiment 
explored the accuracy of our system in these scenarios. 
Each participant trained and tested the system while walk-
ing and jogging on a treadmill. Three input locations were 
used to evaluate accuracy: arm, wrist, and palm. Addition-
ally, the rate of false positives (i.e., the system believed 
there was input when in fact there was not) and true posi-
tives (i.e., the system was able to correctly segment an in-
tended input) was captured. The testing phase took roughly 
three minutes to complete (four trials total: two participants, 
two conditions). The male walked at 2.3 mph and jogged at 
4.3 mph; the female at 1.9 and 3.1 mph, respectively.  
In both walking trials, the system never produced a false-
positive input. Meanwhile, true positive accuracy was 
100%. Classification accuracy for the inputs (e.g., a wrist 

tap was recognized as a wrist tap) was 100% for the male 
and 86.7% for the female (chance=33%).  
In the jogging trials, the system had four false-positive in-
put events (two per participant) over six minutes of conti-
nuous jogging. True-positive accuracy, as with walking, 
was 100%. Considering that jogging is perhaps the hardest 
input filtering and segmentation test, we view this result as 
extremely positive. Classification accuracy, however, de-
creased to 83.3% and 60.0% for the male and female partic-
ipants respectively (chance=33%). 
Although the noise generated from the jogging almost cer-
tainly degraded the signal (and in turn, lowered classifica-
tion accuracy), we believe the chief cause for this decrease 
was the quality of the training data. Participants only pro-
vided ten examples for each of three tested input locations. 
Furthermore, the training examples were collected while 
participants were jogging. Thus, the resulting training data 
was not only highly variable, but also sparse – neither of 
which is conducive to accurate machine learning classifica-
tion. We believe that more rigorous collection of training 
data could yield even stronger results. 
Single-Handed Gestures 
In the experiments discussed thus far, we considered only 
bimanual gestures, where the sensor-free arm, and in par-
ticular the fingers, are used to provide input. However, 
there are a range of gestures that can be performed with just 
the fingers of one hand. This was the focus of [2], although 
this work did not evaluate classification accuracy.  
We conducted three independent tests to explore one-
handed gestures. The first had participants tap their index, 
middle, ring and pinky fingers against their thumb (akin to 
a pinching gesture) ten times each. Our system was able to 
identify the four input types with an overall accuracy of 
89.6% (SD=5.1%, chance=25%). We ran an identical expe-
riment using flicks instead of taps (i.e., using the thumb as a 
catch, then rapidly flicking the fingers forward). This 
yielded an impressive 96.8% (SD=3.1%, chance=25%) ac-
curacy in the testing phase.  
This motivated us to run a third and independent experi-
ment that combined taps and flicks into a single gesture set. 
Participants re-trained the system, and completed an inde-
pendent testing round. Even with eight input classes in very 
close spatial proximity, the system was able to achieve a 



  

remarkable 87.3% (SD=4.8%, chance=12.5%) accuracy. 
This result is comparable to the aforementioned ten-
location forearm experiment (which achieved 81.5% accu-
racy), lending credence to the possibility of having ten or 
more functions on the hand alone. Furthermore, propriocep-
tion of our fingers on a single hand is quite accurate, sug-
gesting a mechanism for high-accuracy, eyes-free input. 
Surface and Object Recognition 
During piloting, it became apparent that our system had 
some ability to identify the type of material on which the 
user was operating. Using a similar setup to the main expe-
riment, we asked participants to tap their index finger 
against 1) a finger on their other hand, 2) a paper pad ap-
proximately 80 pages thick, and 3) an LCD screen. Results 
show that we can identify the contacted object with about 
87.1% (SD=8.3%, chance=33%) accuracy. This capability 
was never considered when designing the system, so supe-
rior acoustic features may exist. Even as accuracy stands 
now, there are several interesting applications that could 
take advantage of this functionality, including workstations 
or devices composed of different interactive surfaces, or 
recognition of different objects grasped in the environment.  
Identification of Finger Tap Type 
Users can “tap” surfaces with their fingers in several dis-
tinct ways. For example, one can use the tip of their finger 
(potentially even their finger nail) or the pad (flat, bottom) 
of their finger. The former tends to be quite boney, while 
the latter more fleshy. It is also possible to use the knuckles 
(both major and minor metacarpophalangeal joints). 
To evaluate our approach’s ability to distinguish these input 
types, we had participants tap on a table situated in front of 
them in three ways (ten times each): finger tip, finger pad, 
and major knuckle. A classifier trained on this data yielded 
an average accuracy of 89.5% (SD=4.7%, chance=33%) 
during the testing period. 
This ability has several potential uses. Perhaps the most 
notable is the ability for interactive touch surfaces to distin-
guish different types of finger contacts (which are indistin-
guishable in e.g., capacitive and vision-based systems). One 
example interaction could be that “double-knocking” on an 
item opens it, while a “pad-tap” activates an options menu. 

Segmenting Finger Input 
A pragmatic concern regarding the appropriation of finger-
tips for input was that other routine tasks would generate 
false positives. For example, typing on a keyboard strikes 
the finger tips in a very similar manner to the finger-tip-
input we proposed previously. Thus, we set out to explore 
whether finger-to-finger input sounded sufficiently distinct 
such that other actions could be disregarded. 
As an initial assessment, we asked participants to tap their 
index finger 20 times with a finger on their other hand, and 
20 times on the surface of a table in front of them. This data 
was used to train our classifier. This training phase was 
followed by a testing phase, which yielded a participant-
wide average accuracy of 94.3% (SD=4.5%, chance=50%). 
EXAMPLE INTERFACES AND INTERACTIONS 
We conceived and built several prototype interfaces that 
demonstrate our ability to appropriate the human body, in 
this case the arm, and use it as an interactive surface. These 
interfaces can be seen in Figure 11, as well as in the ac-
companying video.  
While the bio-acoustic input modality is not strictly tethered 
to a particular output modality, we believe the sensor form 
factors we explored could be readily coupled with visual 
output provided by an integrated pico-projector. There are 
two nice properties of wearing such a projection device on 
the arm that permit us to sidestep many calibration issues. 
First, the arm is a relatively rigid structure - the projector, 
when attached appropriately, will naturally track with the 
arm (see video). Second, since we have fine-grained control 
of the arm, making minute adjustments to align the pro-
jected image with the arm is trivial (e.g., projected horizon-
tal stripes for alignment with the wrist and elbow).  
To illustrate the utility of coupling projection and finger 
input on the body (as researchers have proposed to do with 
projection and computer vision-based techniques [19]), we 
developed three proof-of-concept projected interfaces built 
on top of our system’s live input classification. In the first 
interface, we project a series of buttons onto the forearm, on 
which a user can finger tap to navigate a hierarchical menu 
(Figure 11, left). In the second interface, we project a scrol-
ling menu (center), which a user can navigate by tapping at 

Figure 11: Our sensing armband augmented with a pico-projector; this allows interactive elements to be rendered on the skin.  



 

the top or bottom to scroll up and down one item respec-
tively. Tapping on the selected item activates it. In a third 
interface, we project a numeric keypad on a user’s palm and 
allow them to tap on the palm to, e.g., dial a phone number 
(right). To emphasize the output flexibility of approach, we 
also coupled our bio-acoustic input to audio output. In this 
case, the user taps on preset locations on their forearm and 
hand to navigate and interact with an audio interface.  
CONCLUSION 
In this paper, we have presented our approach to appropriat-
ing the human body as an input surface. We have described 
a novel, wearable bio-acoustic sensing array that we built 
into an armband in order to detect and localize finger taps 
on the forearm and hand. Results from our experiments 
have shown that our system performs very well for a series 
of gestures, even when the body is in motion. Additionally, 
we have presented initial results demonstrating other poten-
tial uses of our approach, which we hope to further explore 
in future work. These include single-handed gestures, taps 
with different parts of the finger, and differentiating be-
tween materials and objects. We conclude with descriptions 
of several prototype applications that demonstrate the rich 
design space we believe Skinput enables.  
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